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Abstract 
This report describes the design of the University of Southampton’s entry the UoSS Orca, which 
will be entered into the International Submarine Race 2015. This report provides an overview of 
the design and manufacturing processes which has been fervently carried out by our team. 
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1 Introduction 

1.1 The University of Southampton 

The 13th International Submarine Races represent the University of Southampton’s debut into 
the competition, with a multidisciplinary team of male and female engineers, ship scientists, 
biologists, chemists, environmental scientists, psychologists, and computer scientists.  

The aim of SUHPS is to excel in the competition and provide a return on investment for our 
financial supporters, ultimately through positive media exposure in a successful race. Further, 
the team will embrace and champion the competition’s set goals of inspiring and advancing 
educational experience by translating theoretical knowledge to reality, fostering advances in 
subsea vehicle dynamics, propulsion and life support systems, and to increase public awareness 
to subsea challenges.  

 

1.2 Background 

The University of Southampton is listed within the top 15 UK research universities, ranking 11th 
on the research fortnight rankings for Research Excellence Framework 2014. A Russell Group 
institution, Southampton has internationally known research centres working in the maritime 
area such as the Institute of Sound and Vibration Research, and has more than one department 
deemed a ‘centre of excellence’ one of which is the Maritime Centre of Excellence which houses 
the Global Technology Centre. 

The University of Southampton prides itself on the close relationships it has developed with 
talented people and likeminded organisations across the world. One of the main aims of the 
university is to place a high value on excellence and creativity, supporting independence of 
thought, and the freedom to challenge existing knowledge and beliefs through critical research 
and scholarship, with the moto to change the world for the better. 

The University has teams competing in other human powered competitions such as human 
powered flight, but we are the first team to compete with a human powered submarine.  

 

1.3 Aims 

Given that this year’s event represents our first attempt at the competition, we have set a 
number of aims we consider to be realistic: 

¶ Lay the foundations for future submarine race entries; 

¶ Create a first iteration submarine based on firm principles on which future years can 
build; 

¶ Enter a working submarine and complete a race. 

 

1.4 Objectives 

¶ Students will have the unique opportunity to build a submarine themselves by turning 
their collective theoretical knowledge into a reality, producing a working submarine 
which can enter international races; 
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¶ Students will benefit from graduate opportunities that arise from organised networking 
events both through the competition (there are centrally-held careers fairs and 
networking lunches during the week of the competition in Maryland) and potential 
corporate collaborators (and vice versa for corporate collaborators that have the benefit 
of access to world-leading undergraduates); 

¶ Students will have the chance to hone their mentoring and teaching skills by engaging in 
personally-rewarding STEM Outreach events; 

¶ Participating in an international competition will raise the profile of the University, its 
Engineers and associated sponsors on a global stage; 

¶ Forging and reinforcing links with local and multinational businesses and Further 
Education providers will lay the foundations for future academic and graduate 
connections; 

¶ Nurture enthusiasm amongst other students within the university to become involved in 
the project to ensure an ongoing legacy in the form of future submarine entries to the 
competition. 

 

1.5 Team Personnel 

The team itself, which is overseen by a four-strong undergraduate and postgraduate committee, 
is organised into five smaller sub-teams, each of whom specialise in one area of 
design/manufacture. These are: Hull, Life Support & Ergonomics; Transmission; Propulsion; 
Control Surfaces; Marketing & Finance. Each sub-team contains 8 – 10 members, with the core 
manufacturing and race team consisting of 11 members. This is still the first year since the 
formation of SUHPS and so we hope to expand our core team in future years.  
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2 Design Principles 

The submarine is designed to be operated by a single pilot whilst using SCUBA equipment to 
provide life support during submersion. A simple design was chosen in order to reduce the risk 
of failure during operation in the wet tests and the competition, increasing the chance of 
improved reliability and reducing the need for difficult repairs. The CAD programmes 
SolidWorks and Rhino were used in order to design the submarine. 

 

2.1 Hull design 

To produce a suitable design for the submarine the size of the pilot and the transmission system 
were the main constraints. These factors determined the minimum size of the submarine.  

In order to be able to check the pilot size a rough model of a pilot was created in SolidWorks as 
shown in the Figure 1.  

 

Figure 1. Mock mannequin of Submarine pilot 

 

The main dimensions were the width of the pilot’s shoulders, his height, and the height of his 
legs when bent. This model was combined with the restrictions imposed by the transmission to 
produce the dimension constraints in the table. 

 

Item Dimension 
(m) 

Height of Pilot  1.83 

Shoulder width 0.48 

Height of Transmission 0.30 

Transmission Shaft Length 0.62 

Table 1. Dimension constraints 

2.1.1 Methodology 

The ideal hydrodynamic shape was found from a literature search to be an elliptic front with a 
parabolic tail from various literature. Equations for those shapes were used to create side and 
plan view curves, which were used as the basis of the hull model. 
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As we were a new team there were several iterations of the hull design as issues that we had 
not foreseen began to arise. From a modelling standpoint, the hull model in Figure 2 can be 
seen as unsuccessful as the shape included rather tricky geometry. This geometry proved too 
difficult to translate into a working mould. Due to these practical considerations, the initial 
design was edited.  

 

Figure 2. NACA 16015 Revolved 

The final design can be seen in Figure 6. This design carries forward the equations that were 
based on the ideal hydrodynamic shape, but the cross-section of this model was modified to suit 
manufacturing requirements. A comparison between the cross-sections of the initial and revised 
models can be seen in Figure 5. The modified cross-section is less than ideal due to the parallel 
sides of the hull. 

This was the original design but the pilot was too large to fit inside and the transmission system 
was taller than first anticipated.  

The second iteration was produced to fit the first transmission system (Figure 3). However, from 
a hydrodynamic prospective, this hull would create too much drag so the transmission system 
needed to be modified. 
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Figure 3. Whale Hull 

 

Figure 4. 3rd iteration of the hull 

 

The 3rd iteration hull design was created once the transmission dimensions were known and the 
size of the pilot taken into account (Figure 4). This design proved too complicated be built during 
the manufacturing of the plug. The design was then edited as shown in Figure 6. 
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Figure 5. Comparison of cross-sections 

 

The 4th iteration became the final hull design (figure 6). 

 

 

Figure 6. Final hull design 

 

2.1.2 Hydrodynamic Testing 

Once the final hull design had been determined a CFD was run on the supercomputer at 
Southampton University using CCM+. This produced the figure below and allowed the 
propulsion team to assess the propeller needed for the submarine (figure 7). 
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Figure 7. Speed against drag 

The first iteration of the hull had a drag coefficient of πȢππ391 at 2 ms-1. In comparison, the 
drag of the final has increased significantly with the extra volume that has been added into the 
shape. This will be taken into account in the design work the 2016 entry where the towing tank 
at Southampton University will be used to test several models of the submarine. 

 

2.1.3 Manufacturing 

At the start of the year we aimed to build the submarine ourselves using renewable fibre glass. 
However, we found that being a new team it took us a long time to produce our hull design so 
we enlisted the help of Zest Racing through sponsorship to help build the submarine from a plug 
that we made. Next year we will aim to build the submarine by ourselves. Working with Zest 
Racing meant that the hull would be an accurate shape as many teams in past have mentioned 
not being able to create the desired shape which will in turn affect the drag. 

The plug was made out of foam and then covered in Jesmonite (Figure 8a). This was then used 
this to produce one half of the submarine. The second half was then made from the first half 
and the two were bonded together. The plug was made by cutting accurate angles along the 
length of the foam using a wooden frame to support it (Figure 8b). This frame also acted as a 
guide so that two people standing either side of it could cut whole strips of foam away along its 
length using a ‘hot wire method’ – as the name suggests this method involves supplying a length 
of fine wire with a charge so that it becomes hot enough to cut materials when kept taught 
(Figure 8c). In this way, the team were able to strip incremental sections of foam away, leaving 
us with an elliptical cylinder of foam (Figure 8d).  

The foam was then dry sanded to remove any lumps (Figure 8e). This smoother mould was 
painted with three layers of different coloured Jesmonite – a gypsum-based composite – with 
‘wet sanding’ taking place between each application (Figure 8f). The different colour Jesmonite 
acted as a measure of the depth of the sanding. The smooth plug was then sent to the 
manufacturer who used Matrix 300g 2x2 Twill Glass, Glass Bi-ax, and Multi-purpose Epoxy Resin 
to build the hull. The hull is 3mm thick and 6mm at the join of the two halves. 
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Figure 8. Hull manufacturing process 
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2.1.4 Life Support & Dead aŀƴΩǎ Switch 

The dead man’s switch will consist of a bicycle brake which has to be compressed at all times. 
The buoy will be held in place by a string latch and a pin. If the driver lets go of the bike switch 
this will cause the spring-loaded pin to retract, a regular bike brake cable will connect the two. 
The buoy will be attached to a reel of fluorescent load bearing string, which can be rewound to 
retrieve the buoy. The string will be fed to the top of hole from which the buoy is released by a 
metal ring attached to the inside of the hull (to avoid entanglement within the hull).  

The buoy will be painted a bright colour and will have a fibreglass top to ensure the foam does 
not create friction during use. The buoy will be of cylindrical shape of 15 cm diameter and 15 cm 
depth, the circular face will face the surface. The buoy will be situated next to the pilot door to 
the sub, and the cable will be fed to the buoy through metal rungs installed in the inside hull of 
the sub. The door will be held shut by one door hatch, the handles will be removed and cables 
rapped round and attached to them such that when pulled the latches will release. The door will 
buoyant so once release the door will open. 

The pilot will have one air tank situated under the support bench and a backup pony in case of 
emergency. Testing is being performed at Southampton Hospital to mimic some of the 
conditions in a controlled environment and conduct power testing versus oxygen consumption 
to calculate the size of the air tanks required. 

 

2.1.5 Submarine Hatch 

The main issue with the hatch design was the dead man’s switch. We wanted to keep it as simple as 

possible and decided early on to have only one door on the submarine. The door measures 1.4 

meters in length and is held down at the rear end by a single hinge. Creating a double hinge would 

have been too time consuming, and this also kept the design simple. At the front, we decided to put 

the dead man’s switch mechanism on the port side of the submarine, as putting it in the middle 

would have gotten in the way of the pilot’s head. We used a bike’s brake for the switch itself, and it 

is connected to a simple pivoting system. On the other end is a door lock held back by a spring. This 

causes the resting position of the lock to be open. Consequently, when the pilot releases the switch, 

the lock retracts and the door opens. Foam was put onto the door, making it positively buoyant. This 

ensures that the door opens when the lock is retracted, allowing the pilot to easily exit the 

submarine. Five draining holes were drilled into the hatch to allow for air to escape when it is 

submerged. A picture of the hatch during the construction process is shown below (figure 9). 

 

Figure 9. Hatch during construction 

 



14 
 

2.1.6 Braking/Reverse thrust 

Due to friction, it is believed that the vessel will stop sufficiently quickly enough when pedalling 
by the pilot ceases. If the pilot requires to stop quicker, then they are able to pedal backwards 
to provide reverse thrust from the propeller. 
 

2.1.7 Evaluation 

In the future we will aim to build the submarine all by ourselves using renewable composites. 
We will look at decreasing the drag coefficient by testing models in the towing tank. We will also 
aim to test the pilot in a decompression chamber to look into the breathing of the pilot. 

 

2.2 Transmission 

The Transmissions sub-team decided to use a traditional bicycle crank system to transfer the 
energy from the pilot to the propellers. This was decided on as it is a simple easy system to 
acquire and install, it is also cheaper than the original system we had designed. The original 
system called for an innovative step- system which would enable easy access into the 
submarine. The step system was based on a cross trainer and the pedals are linked to a rotary 
wheel. The rotary wheel will then be connected to a bevel gear to transfer the power onto the 
drive train.  

However after serious consideration in regards to space, the transmission sub-team decided to 
change the system into a more compact system. The current transmission system employs a 
bicycle crank. 1.5:1 Bevel gears then connects the cranks to the drive train. One of the bevel 
gears is welded on the crank pin directly, thus cutting down on as much moving parts as 
possible, to prevent as much loss as possible. Moreover, to add to the simplicity of the system, 
the transmission team decided against the use of a gear box due to complexity and timing 
restrictions. 

Academic studies have found that a comfortable cadence for human powered submarine pilots 
is between 30-40rpm. This suggest the transmission system should have a ratio of 
approximately 1:5 or more. However, due to the final size of the hull a ratio of 1:2 was used. 

Single speed and direct drive was used in order to improve reliability so the input from the pilot 
translates the energy from the rotation of the pedals to the rotation of the driveshaft and in-
turn, the propeller.  

At the beginning of the design phase, the hull was 2.8 meters long and the transmission system 
was located at 2.4 meters from datum front. Once the hull was redesigned to be shorter, the 
transmission system had to be moved to a new location at 1.6 meters. This ensures that the 
system is unobstructed while the pilot is pedalling. The transmission design models are shown 
below (Figure 10). 
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Figure 10. Side, top and isometric view of transmission system 

2.2.1 Evaluation 

Our experience this year has taught us we can use thinner metal plates next year which would 
reduce the weight of the system. We would also use a key and circlips method to assemble the 
system instead of glue which is the method we used this year to provide stronger support. A 
bigger gear ratio would make the system more efficient and so this would be considered next 
time. 

 

2.3 Control 

The Control subsystem consists of the design and manufacture of control surfaces (fins) as well 
as the buoyancy system and mechanisms for moving surfaces. It was established that the 
primary requirements for this race is that the submarine follows a strictly straight path as 
quickly as possible. Hence the final design composed of four rear fins and an electronic control 
system with buoyancy created with expanded polystyrene foam through a trial and error 
process (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Placement of control surfaces 

2.3.1 Control Surfaces 

In early discussions it was noted that the propeller was to be a single prop and hence both the 
torque and precession of the rotating system would affect the movement of the craft 
significantly.  An additional requirement is that the fins provide some form of stability, 
analogous to the vertical stabilizers on planes, but four fins reducing the effects of both pitching 
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and yawing. Stability is essential for the craft to continue in a straight line. The Diagram below 
describes the effects of the hull and fins on this stability (Figure 12). 

 

If the craft yaws to the side by a set angle then the vertical stabilizer counters this and returns 
the submarine to the correct angle. The body would create a lift too, which counters the vertical 
stabilizer. For this reason the fins must be placed as far backwards as possible to increase the 
moment arm.  

 

 

 

 

 

 

 

 

 

Figure 12. Effects of hull and fins on stability 

 

It was noted that due to the continuous changes in hull designs and difficulties in determining 
the effect of the hull on stability that, for the first race without significant testing and redesigns, 
that the fins may not be effective enough to stabilize the craft. However the use of electronics 
to vary the angle of attack of the vertical fins will ensure yaw stability. Pitch stability is improved 
by buoyancy neutrality at a certain depth. If pitching occurs and the craft rises then due to the 
buoyancy of the craft it will sink to the correct depth once the angle of attack of the submarine 
is restored, which is done by the horizontal fins. It should be noted that the design of the fins 
have included a large safety margin to ensure this passive stability occurs.  

Initially two small fins placed at the front of the submarine were considered however these 
would be detrimental to the stability of the craft if placed ahead of the centre of gravity as well 
as further manufacturing and use of precious internal space.  

The NACA0012 foil was used, a symmetrical fin was moved due to it theoretically having no 
pitching moment, and hence lowering the load on the servos if made to move, if they are placed 
at the quarter chord point. The servos were chosen so that they could withstand the lift 
produced by the fin close to the fin stalling with an added safety factor of two.  NACA0012 also 
had a low drag coefficient and small proportionality to the lift produced by the fin as opposed to 
other shapes.  

Another requirement of the fins is to be as hydrodynamic as possible, the use of fin-tips were 
considered however due to structural problems and increased root bending of the fins these 
were discarded although they improved stability slightly. An elliptical fin shape was adopted to 
reduce the induced drag particularly with the two vertical fins which in theory should always be 
producing lift to counter the rotations of the propeller (Figure 13). This however incurred 
manufacturing difficulties, particularly with foam. 
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Figure 13. Fin shape 

 

Foam provided the simplest, cheapest and quickest method of manufacturing fins. Other 
options included timber and aluminium. The two latter would require Computer Numerical 
Control (CNC) machining which proved costly. Hence foam was adopted with the addition of a 
fiberglass layer to improve strength significantly. Fibreglass added both safety issues and surface 
finishes that would not be to a hugely great standard. However costs were approximately ten 
times less. An additional advantage to foam is the shift of buoyancy parts from inside to outside 
of the hull to save space, while the thickening of the aerofoil would induce only a slightly greater 
drag.  

Both vertical fins were designed to operate at the optimum lift to drag conditions providing a 
moment to counteract the approximate torque of the propeller of 20Nm. Due to the variable 
nature of this torque and dependence of the pilots pedalling speed the two vertical fins were 
designed to move, which will also prevent the craft from veering off course. Although 
challenging to make move, there were an abundance of electronic engineers within the team.  

It was decided to move the whole fin, due to simplicity and to ensure the fins remained 
symmetrical. Using flaps would effectively vary the chamber of the fins and hence induce a small 
moment. Although this can be negligible, it was still found to be less effective in moving the sub.   

The transmission rod that would rotate the fins or hold them in place was to be cylindrical in 
order for ease of rotation. Cylinders are bluff body objects and hence produce a huge amount of 
drag. An attempt to produce a cover proved ineffective and time consuming. Initially thin 
Acrylonitrile butadiene styrene (ABS) was tested and it was hoped to be flexible enough to twist 
with the fin, however the prototypes were ineffective and too rotationally rigid while easy to 
locally buckle and bend under small loads. The attempt to cover the rod were left due to time 
constraints.  
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Figure 14. Fin designs 

 

Another design innovation that could be successfully implemented was the use of wavy leading 
edge fins (Figure 14). Inspired by whales this late change of design based on research journals 
would reduce the effects of stall if occurred due to the failure of the surfaces while improving 
the lift capabilities. On the other hand slight difficulties in manufacture were produced with 
fibreglass layup, while foam shaping simple (Figure 15). [1] 

 

 

 

 

 

 

 

Figure 15. Foam fin ready for fibreglass 

 

2.3.2 Buoyancy 

Due to the complexity in hull design and the constant changing of designs the buoyancy system 
has varied considerably. The weights of all components, disregarding their buoyancy, was taken 
as the maximum buoyancy force required in the early stages of the design process. This 
demanded a 18m3 box of foam at worst to be placed inside the hull.  

Initially the design was a row of airtight canisters than can be moved to allow changes in other 
designs to be accounted for. However the complexity of constructing such a system, the time 
involved as well as costs lead to a simpler design; whereby foam would be bespoke cut once all 
other components completed. The design of a hot wire cutter and the purchase of excess foam 
ensured that quick manufacturing in complex shapes can be performed (Figure 16). The foam 
design would also allow for foam to be formed into ergonomic shapes if required.  
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Figure 16. Hot wire cutter designed and used by the team 

 

2.3.3 Electronics 

An electronic control system was designed based on the strong team interests and that it 
relieves the pilot of the responsibility when racing. It also provides the much needed experience 
to produce a far better system for future races which involve curved tracks. 

A major issue with electronics in the design is the waterproofing, in particular the moving parts, 
coupling a servo to the fins through a watertight system. A waterproof servo at a depth of 2m, 
where it was found typical submarines float, where far too expensive. While the alternative, an 
o-ring and circlip coupler made ourselves would keep costs minimal, although adding to 
manufacturing time. It was decided than an arduino coupled with sensors would be used, since 
they were readily available and are appropriately accurate. Another idea discussed was the use 
of plastic sheets, one side clamped to the transmission rod, while the other to the box, forming 
a flexible rotatable airtight seal, however it was found that this was unreliable.  

Water-tightening the design was a simple, however the structure on which the servo would sit 
was far more challenging. A proposed welded aluminium square section bar frame was a 
concept discarded as it increased manufacturing time considerably and proved complicated. A 
thick bent plate (3mm) would instead be used, and bent into the correct shape (Figure 17). Each 
plate would be bent individually according to the curvature of the hull at that position. The plate 
would be bolted down onto the hull surface.  

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Servo housing 
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The servos purchased are waterproof at depths of 1m, and hence provided some safety in case 
of leakages above normal servos, while their cost was not extortionate. The servos were 
mounted to the plates using small aluminium blocks.  

To cover the electronics designed boxes made of laser cut materials such as MDF or acrylic were 
considered, however there were an abundance of potential failure points in such designs, 
especially with the large number of joints. Hence ABS was chosen to be vacuum formed over left 
over foam. Using a single ABS sheet provided less holes for water leakages as well as structural 
rigidity. ABS manufacture was also extremely simple.  

 

A separate large ABS box was formed to contain the arduino and battery systems. Rubber was 
used between each ABS box through which screws clamped the design to the aluminium plate 
to ensure water-tightness especially around wires which must pass out of the box. 

Below is the final servo assembly, included our outlines of the o-rings and circlip. Grub Screws 
were used to attach the coupler to the servo (Figure 18).  

 

 

 

 

 

 

 

 

 

Figure 18. Final servo assembly 

 

2.3.4 Evaluation 

After a year of designs, it was found that improvements can be made to the fin designs. The fins 
are manufactured to a much higher strength and thickness than required, this was due to the 
unknown strengthening properties of a fibreglass layer upon the fin. For future competitions 
fins would be designed much thinner to reduce viscous drag components, while perhaps 
another layer of fibreglass will maintain their strength. Using machinery to sand the fins to a 
high smoothness would also improve the hydrodynamics of the design.  Additional 
manufacturing, perhaps using a small CNC machine to create fins flush to the hull of the 
submarine or produce parts that lower the drag effects of cylindrical rods.  

Further analysis can be performed upon the internal structural parts to reduce the amount of 
materials used, both improving costs and reducing wastage. Plate thicknesses may be able to be 
reduced as well as the rod diameters which controls the size of the fins.  

With the construction of a small CNC in preparation for the next competition, blended parts to 
the hull can also be formed, moving the servo outside of the hull allowing the overall hull to 
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reduce in size. However the hydrodynamic consequences of adding shapes externally against 
reducing the size of the hull must be quantified. 

2.4 Propeller  

2.4.1 Initial Thoughts 

When looking at marine propellers there are three main designs: Fixed Pitch (FP), Variable Pitch 
(VP), and Contra Rotating (CR). 

Each has certain advantages and for FP that is that they are the easiest to make and that there is 
very little that can go wrong.  This is mainly due to the fact that other than the propeller itself 
there are no other moving parts.  It is also quite easy to drive as only one blade needs to spin in 
one direction. VP has some advantages that are especially relevant for the human powered 
element in that the pilot can maintain a constant cadence at their maximum efficiency.  This is 
due the properties of the propeller changing over time, and is equivalent to having gears. CR 
propellers are some of the most efficient and also remove a lot of the torque produced due to 
the two directions of rotation.  They are however the most complicated to implement due to 
the transmission system having to spin in two directions. 

We initially toyed with all three however the transmission team requested the use of only one 
propeller.  This left us with either FP or VP and while VP would have been better in terms of 
providing power, we felt that for our first year it would be quite risky and it made more sense to 
ensure that we had a working propeller to ensure that we could actually compete. 

 

2.4.2 Materials 

The choices of materials were metal, wood, or fibreglass.  Metal would have been ideal, 
however with our experience it wasn’t really possible.  Wood and fibreglass were about on a par 
with each other and so we went for fibre glass as it was easy to manufacture in house.  For this a 
3D printed mould was used as a base to cover in the fibreglass. 

 

2.4.3 Design process 

 The design started with looking at designs that existed already and from that it seemed like 
going for fewer blades that are long and thin was the most efficient option for a propeller that 
rotates relatively slowly.  The other thing we had to work out was how to attach the propeller to 
the drive shaft. In the end it was decided that we would weld a metal plate onto the drive shaft 
and then place the body of the propeller between that and another with pins through to ensure 
that the propeller would keep spinning at the proper rate. 

The next stage was numerical analysis and a program called JavaProp (created by Martin 
Hepperle in 2009) was used.  While this program is primarily designed for aircraft propellers the 
fluid properties can be changed in order to use water as the medium.  Another interesting point 
on the program is that there is an option to calculate with a shroud around the propeller, and 
with the speeds involved this always added to the efficiency and so we decided to produce one 
for the sub. After running the calculations we eventually settled on a prop with a diameter of 
0.5m and a shroud which produced the following table (Table 2). 
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Table 2. Results of propeller calculations 

 

For the duct we ended up going with an accelerating design following the Kort Nozzle design as 
this was well documented and so the next stage was to start with CAD.  For the duct a NACA 
profile (4415 was imported) and revolved to make the model shown below (Figure 19). 

 

 

 

 

 

 

 

 

Figure 19. Duct profile 

 

Next the prop was designed following a similar process, an aerofoil was imported into the 
program and then extruded according to a 3D curve that was designed to ensure the at the 
intended 200RPM the aerofoil would be at the optimal angle of attack along its length.  The end 
was left square as that was the most efficient when combined with the duct (Figure 20). 

 

 

 

 

 

 

 

Figure 20. Final propeller design 
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2.4.4 Manufacture 

All of the parts needed were 3D printed in house using some printers that were available to 
students (Figure 21).  The only issue with this was that the parts to be printed were quite large 
and so the printers didn’t have the build volume to print the complete parts.  This meant that 
they had to be broken down, printed separately, and then glued together afterwards. These 
were then coated in fibreglass using a home kit.  Initially there was some difficulty as none of us 
had ever laid any fibreglass before but we were able to learn quickly and eventually coat the 
complex structures properly.  

 

 

 

 

 

 

Figure 21. 3D printed propeller 

 

2.4.5 Evaluation 

For next year’s propeller the ideal would be a variable pitch propeller.  This would still keep 

things relatively easy from the transmission side of things, but also provide extra efficiency 

allowing the pilot to remain peddling at the optimal rate.  We may also look at using metal for 

this as that will make it a lot easier to integrate with the motors needed to change to rotation of 

the propeller blades.  For a non-propeller design, initial ideas are focussed around a single fin, 

such as that used by free divers and spear fishers.  This would involve a fully integrated design 

with a flexible hull, with the fin constructed with layered composites to allow maximum 

strength and flexibility. 

 

3 Diving and Safety 

3.1 The team 
Our dive team consists of three pilots (1 main, 1 backup, 1 female) and three other divers. There 
will always be 1 pilot and 4 safety divers in the water, with another diver on land as support. The 
safety divers will help the pilot in and out of the submarine and lower and submerge the 
submarine. For the safety of the pilot, there has been a rigorous training programme to ensure 
they are physically able and comfortable to power and control the submarine during the 
competition. This has consisted of gym and cycling training sessions, and a number of open 
water dives to build confidence underwater. 
 

3.2 Pilot air consumption 

For diver safety, the air consumption during each race has been calculated (See below). We will 
follow the general rule that states there must be a minimum of 50 bar left in each tank at the 
end of the race, and a secondary source will be available for the pilot’s safety. 
 
An estimation of the consumption rate of air by the pilot is made on a number of assumptions: 
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¶ A breathing rate of 50 L/min during heavy exercise for our pilot who has very good 
physical fitness. 

¶ Each stage of the race will take a maximum of 10 minutes to complete. 

¶ Minimum air required: 10 mins * 1.3 bar * 50 L/min = 650 L 
 

A Standard 12 L SCUBA tank at 220 bar will have 220*12 = 2640 L. This tank will provide plenty 
of air, much more than required for the competition and will require more space within the 
submarine. Therefore a smaller tank can be considered: 7 L tank at 220 bar will provide 220*7 = 
1540L. This size will provide sufficient air supply whilst retaining the 50 bar minimum required 
by the rules after the race. However, the size tank we will use will likely depend on space 
available once the hull interior has been completed. 
 
For safety, a 3 l pony cylinder filled to 220 bar will be used as the secondary source, this will 
have (220*3 =) 660 L. 
 
In summary, the team have opted for an aluminium tank with an additional 3-litre pony for 
safety. An aluminium tank is preferred over a steel tank to reduce the weight within the 
submarine and comply with competition rules. 
 

4 Finance  

As this is the first time our team have competed and we were a newly formed team in October 
2014 we had to find funding to support our submarine. The members of our team who wanted 
to be involved but had no engineering background formed the marketing sub-group and were in 
charge of finding funding and advertising the team’s existence through media and outreach. 
Finances for our entry were raised from two main sources, and a selection of smaller sponsors 
were used to fulfil various team requirements. 

The first major sponsor was QinetiQ – who sponsored us for over £10,000 to cover the main 
build, pilot training and some of the logistics costs including some flights and submarine 
transport to the USA. 

Our second major sponsor was the University of Southampton Education Enhancement Fund, 
who provided around £5000 to cover further logistics costs including the rest of the team 
member flights. 

Smaller sponsors included Andark Diving and Watersports, a local diving school, who provided 
discounted training for many of our divers, as well as a suitable man-made lake for testing 
purposes. A University alumna was also interested in sponsoring the team through his company 
Tindale Systems. 

Finances were managed by one finance director, who liaised with other committee members 
throughout the year. A system, based on google drive, was designed in order to manage the 
team’s finances, whereby sub-team members could ‘order’ parts via an online form. The 
requests could then be approved by the finance director, or forwarded to other committee 
members in areas of uncertainty.  

The entire system was integrated so that each sub team’s current budget and usage could at a 
glance be compared with their remaining budget, and the team’s budget as a whole. The benefit 
of such a system was that it was easily updateable, and funds could easily be redirected 
following under and overspends by a given sub team. 
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Thanks to this system, finance management was successful for our team. 
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